Smart Thinning: Implementing Precision Forestry with Modern Technology and DSS

Kari Väätäinen, Eero Holmström, Evgeny Lopatin, Mauricio Acuna, Borja Carcia Natural Resources Institute Finland FORESTCARBOVISION Kickoff 27-28 May 2025, Joensuu

FORESTCARBOVISION

Co-funded by the European Union

Northern Periphery and Arctic

• In Finland, 480 000 hectares of forest are thinned each year

JONNONVARAKESKUS

- 70% of all felling is thinning, which reinforces the vitality of the remaining trees and helps them to mature into sawn wood
- Thinning directly affects forest growth, carbon sequestration, and the forest's ability to protect itself against biotic and abiotic damage
 - Excessive thinning causes losses in both carbon sequestration and forest tree production

Background

UONNONVARAKESKUS

- Many factors can affect the outcome of thinning
 - Harvester operator
 - Forest and harvesting conditions
 - Forest owner's objectives
 - Thinning recommendations (e.g. upgraded thinning recommendations in Finland)
 - Accuracy of forest data

Thinning intensity

Carbon sequestration and carbon stock

Development in total yield and volume growth

Growth of individual trees

Thinning accumulation and thinning income

Economic return

Rotation period

3

Damage risks

Dead wood

https://www.luke.fi/fi/uutiset/voimakkaat-harvennuksetpienentavat-metsikon-hiilensidontaa-ja-kasvua

+

Current practices

- Harvester operator training: 1.5 years
- Up-to-date information and technology
 - Using forest machine simulators in teaching practicing thinning models
 - Data from forests with national Lidar campaigns
 - Support for other open-source data (aerial photos, canopy height model, trafficability index)
- Recommendations (models) for thinning intensity in Finland are in use
 - With different stand parameters (density, tree size, fertility, tree species)
 - With different interest rates

NNONVARAKESKUS

• Different options for taking carbon sequestration into account

Practices to monitor thinning intensity

- Harvester operator's own subjective sampling of the thinning quality result
 - They need to monitor and report the sampling into the system of the timber procurement company
- Varying methods for follow-up of standing/remaining tree density or basal area (Nordström 2024)
 - Using the boom of the harvester (half circle sampling): 80%
 - Monitoring the stem density (number of stems per hectare) and distance between strip roads
 - Using relascope: 64 %
 - For monitoring the stem basal area
 - By visual overlook: 32%
 - More experienced harvester operators
- The Finnish Forestry Centre annually inspects the harvesting results of thinnings in different parts of Finland

Luke OLUONNONVARAKESKUS

Thinning intensity

- Factors affecting on intensity of thinning removal \rightarrow impact on remaining stand and trees
 - The width of the strip road (thinning track)
 - The distance between strip roads
 - The removal intensity of trees at the tree growing area

Recent technology development

- Development in GNSS accuracy
- Challenges under dense canopy
- Solutions
 - Improved RTK-positioning of the base machine
 - With sub-meter accuracy
 - Machine manufacturers offer options with accurate boom-tip positioning
 - Need the heading of the boom pillar base
 - Need censoring boom joints/cylinders

Ovaskainen ym.202

Recent development

- Ponsse: Thinning Density assistant –concept version
- Ilmostar and UNITE Flagship projects
 - Testing various technologies to scan forest and used point cloud data for operator assisting

TREE DETECTION IN REAL TIME WITH LIDAR

Recent development

- More accurate tree maps can be created using dense LiDAR scanning.
 - Challenge is smaller trees under canopy cover of bigger trees
 - And trees close to each other

National Land survey of Finland provides nation vide tree maps as test manner in Metsäkanta web-service Based on national land survey (5 points per m²)

Real-time thinning intensity monitoring in harvester work

Euroopan unionin rahoittama NextGenerationEU

Concept idea of R-TIM

- The DSS would help in decision making for the landowner, wood buyer and machine operator & contractor
- R-TIM can provide **thinning intensity** information for the whole harvested area from the beginning of the site for **monitoring and reporting purposes**.
- Providing information of harvesting intensity on the active working area real-time monitoring and operator support

Concept idea of R-TIM

The concept for real time monitoring of thinning intensity indicators is based on two main data sources:

- 1) recorded parameters of removed stems from HPR-data, and
- 2) preprocessed tree map data either from the high-accuracy ALS or MLS

Impact of the harvester positioning accuracy on the accuracy of the tree matching

- Matching accuracy can be improved using tree parameters
- First results are promising when estimating remaining basal area of the stand in thinning site

Thank you!

